Welche technische Erfindungen haben die Vinylschallplatte begünstigt und aus welchen Gründen bleibt sie als analoges Medium in heutiger Zeit bestehen?

VerfasserIn:
Inhaltsverzeichnis

1 Einleitung ... 1
2 Vorgänger der Schallplatte .. 1
2.1 Beispiele technischer Erfindungen bis hin zum Weg der heutigen Vinylschallplatte 2
 2.1.1 Edisons Phonographen .. 4
 2.1.2 Der Zinnfolien-Phonograph.. 6
 2.1.3 Wissenswertes zur Entwicklung .. 7
 2.1.4 Phonograph .. 7
 2.1.5 Funktionsweise des Phonographen .. 7
 2.1.6 Walzen .. 8
 2.1.7 Edisons Platten.. 8
 2.1.8 Funktionsweise der Sprechapparate ... 8
2.2 Die Schalldose ... 9
2.3 Von der Edisonwalze zur Zinkplatte von Berliner ... 10
2.4 Abspielgerät Grammophon .. 12
 2.4.1 Funktionsweise des Grammophons ... 14
 2.4.2 Trichtergrammophone .. 15
 2.4.3 Schwenkstabgrammophone .. 16
 2.4.4 Tiefenschriftgrammophone .. 16
 2.4.5 Koffergrammophone auch „Picknick- Orgel“ ... 17
 2.4.6 Koffergrammophone auch „Picknick- Orgel“ ... 17
 2.4.7 Die Kindergrammophone .. 18
2.5 Die Entwicklung des Antriebs .. 18
2.6 Die Aufnahmen .. 19
 2.7 Die Pathé-Platten ... 20
2.8 Schallplatten ... 21
2.9 Schellackplatte ... 21
 2.9.1 Tonträger Schallplatte .. 21
 2.9.2 Material ... 22
 2.9.3 Material ... 22
 2.9.4 Die Herstellung einer Schellackplatte .. 22
 2.9.5 Das Ende der Schellackplatte ... 23
2.10 Die Entstehung der Vinylschallplatte ... 24
3.1 Chemische Aspekte und PVC als Sprungbrett .. 25
3.2 Technische Aspekte .. 26
 3.2.1 Formate ... 27
 3.2.1.1 Die Langspielplatte ... 27
 3.2.1.2 Die 7"-Single ... 28
 3.2.2 Plattenspieler ... 30
 3.2.3 Tonabnehmer und Abtastnadel ... 32
3.3 Herstellung ... 34
3.4 Master ... 34
3.5 Pressung in der Fabrik .. 36
4 Vinylschallplatte als nostalgisches Gebrauchsmedium ... 41
 4.1 Soziokulturelle Aspekte ... 42
 4.2 Archivierung .. 42
 4.3 Raritäten und Schallplattencover .. 43
 4.4 Die Schallplatte heute .. 45
5 Literatur ... 47
1 Einleitung

2 Vorgänger der Schallplatte

Im Jahre 1877 erfand Thomas Edison mit dem Phonographen den Vorläufer der Schallplatte, der noch Töne auf Walzen aufzeichnete. Zehn Jahre später ließ Emil Berliner die erste Schallplatte patentieren. Diese bestand zunächst aus Hartgummi, wurde dann aber später aus Schellack gefertigt. Problematisch an diesen Tonträgern war es, dass diese äußerst empfindlich waren. Schon ein einmaliges Abspielen jener Platten konnte dazu beitragen, dass sie zerstört oder die Walze beschädigt wurde. Restauratoren können nun aber auf Hilfe aus der Teilchenphysik hoffen. Denn aus äußerst präzisen optischen Aufnahmen der Schallrillen lassen sich mit Computerhilfe die Schallinformationen rekonstruieren.¹

2.1 Beispiele technischer Erfindungen bis hin zum Weg der heutigen Vinylschallplatte

Da der Weg bis hin zur heutigen Vinylschallplatte durch die verschiedensten technischen Erfindungen begünstigt wurde, wird in diesem Abschnitt exemplarisch auf einige Meilensteine der jeweiligen Epoche eingegangen. Grund für diese kleine Auswahl ist der enorm große Umfang dieser Erfindungen, zugrundeliegend dieser Komplexität werden hier ab Edison einige technischen Errungenschaften dargestellt.

Der Elektrotechniker Thomas Alva Edison (11.02.1847 geboren in Milan/ Ohio – 18.10.1931 gestorben in West Orange/ New Jersey) kam durch den Verkauf der Rechte an der Konstruktion eines Telegraphen an die Western Union zu Geld und errichtete daraufhin seine eigenen Laboratorien in Menlo Park in Orange (New Jersey).

Edison machte Versuche mit einer dünnen Membran des Phonographen von Scott.

Dieser besaß einen Trichter (a) am Ende, der die Schallschwingungen in der Luft aufnehmen sollte. Wiederum an diesem Trichter befand sich eine Membran (b) am kürzer werdenden Ende. An dieser Membran ist ein exzentrisch ausgerichteter Schreibstift (c) angebracht gewesen. Der Schreibstift steht schräg zur Trichterachse. Das Stäbchen (d), drückt gegen das Ende der Membran, wobei jenes gegen die Membran drückt. Hierbei wird solange geschoben, bis die Aufsatzstelle des Schreibstiftes nicht in einem Schwingknoten liegt und sich dadurch nicht mehr bewegt. Die Zylinderachse wird von einem Gewinde getragen, der Zylinder wird bei jeder Drehung seitlich verschoben. Auf ein rußgeschwärztes Papier werden die auf die Membran fallenden Schallwellen mit dem Schreibstift übertragen. Auf dem rußgeschwärzten Papier werden kleine Wellenlinien im Ruß gezeichnet.

\[\text{Vgl. Jüttemann 1979, S. 21.}\]
\[\text{Vgl. Ebd.}\]
\[\text{Vgl. Jüttemann 1979,S. 23.}\]
Anhand dieser aufgezeichneten Wellenlinien konnte man die Frequenz, wie auch die Intensität der Schallwelle feststellen. Der Phonautograph diente lediglich zur Aufzeichnung von Schallwellen, das Gerät war nicht der in Lage diese aufgezeichneten Schallwellen wiederzugeben. Diese Funktion war auch für dieses Gerät nicht vorgesehen.

Abbildung 1: Phonautograph aufgezeichnete Schwingungen

a= Trichter; b= Membran; c= Schreibschrift; d= Stäbchen zum Verändern der Klangfiguren; e= Schraubgewinde

Abbildung 2: Skizze des Phonautographen von Scott
2.1.1 Edisons Phonographen

Richtungsweisend für die spätere Erfindung von Edisons Phonographen dürften die Versuche mit den dünnen Membranen gewesen sein, die im Telefon von Bell verwendet wurden. Im Sommer 1877 arbeitete er mit Alexander Bells Telefonhörer. Er soll festgestellt haben, dass die eingebaute Membran im Gleichklang der Stimme vibrierte. Bei seinen ersten Versuchen verwendete er aus dem von Alexander Graham Bells Telefon stammende Membran. Im Zentrum der Membran montierte er eine kleine Nadel. Er ertastete anfänglich die durch den Schall auf die Membran übertragenen Schwingungen mit den Fingern. Um die Arbeitsfähigkeit der Membran zu präsentieren, baute er ein Modell. Das Modell enthielt wie schon bei dem Phonautograph von Scott, einen Trichter der die Schallwellen in der Luft weiterleitete. Am Ende dieses Trichters befindet sich eine Membran (a), die mit einem Sperrhaken (b) verbunden war. Dieser Sperrhaken konnte wiederum das Klinkenrad in Umdrehungen versetzen. Die Skizze gibt nicht wieder, dass sich auf der Welle des Klinkenrades eine Seilscheibe befand. Auf der Seilscheibe war eine Schnur befestigt, die mit einem aus Papier gefertigten sägenden Mann verbunden war. Sprach man in den Trichter, „sägte der Mann Holz“.

![Abbildung 3: Drehung eines Klinkenrads durch die Schwingung einer Membran](image)

a= Membran; b= Sperrhaken; c= Klinkenrand

6 Vgl. Ebd.
7 Vgl. Ebd.

Als das Papier zum ersten Mal hindurch gezogen wurde, sprach er dem Papier zugewandt ein „Hallo“ zu. Daraufhin wurde das Papier mit der Nadel und der darauf enthaltenden Spur in umgekehrter Richtung ein zweites Mal hindurchgezogen. Durch ganz viel Einbildungskraft soll dabei ein undeutliches, dennoch leises Hallo zu vernehmen gewesen sein. Diese Entdeckung bei diesem Versuch soll Edison dazu bewogen haben, sich weiterhin mit der Schallaufzeichnung, wie auch der Schallwiedergabe zu befassen.\(^11\)

\(^10\) Vgl. Ebd.
2.1.2 Der Zinnfolien-Phonograph

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image.jpg}
\caption{Zinnfolien-Phonograph von Edison}
\end{figure}

13 Vgl. Ebd.
15 Vgl. Jüttemann 1979, S. 28.
2.1.3 Wissenswertes zur Entwicklung

2.1.4 Phonograph

Effektvoll wurde der Phonograph vorgeführt, beispielsweise erkundigte er sich nach dem Befinden der Anwesenden. Schon im Jahre 1889 entstand der erste Phonograph mit Münzeinwurf.

2.1.5 Funktionsweise des Phonographen

\[16\]
\[17\]
Vgl. Ebd.
\[18\]
\[19\]
2.1.6 Walzen

Die Wachswalze war eine Vorstufe der Schallplatte. Sie diente zur Tonaufzeichnung und bestand aus einem speziellen fünf bis sechs Millimeter starken Paraffinwachs. Die Besonderheit lag darin, dass die Paraffinschicht der Walze abgeschliffen und sie wiederverwendet werden konnte. Durch die Entwicklung der Schellackplatte wurde die Wachswalze immer weiter zurückgedrängt und ihre Produktion im Jahre 1929 vollkommen eingestellt.²⁰

2.1.7 Edisons Platten

Im Jahre 1929 wurden von Edison auch gewöhnliche Schellackplatten hergestellt. Aufgrund der Wirtschaftskrise musste aber die gesamte Tonträgerherstellung von Edison aufgegeben werden. Das bedeutet das Ende der Ära des Phonographen als Unterhaltungsgerät für die breiten Massen der Bevölkerung.²¹

2.1.8 Funktionsweise der Sprechapparate

Aus heutigem Technikverständnis ist das Prinzip der Abspielgeräte oder Schreibgeräte eher einfach zu sehen. Es besteht aus einer Halterung für die Membran mit Nadelhalterung (Schalldose) und einem Anschluss für einen Trichter bzw. Hörschläuchen.²² Mit einer Nadel werden die Rillen der Platte bzw. die Walze abgetastet, das wiederum führt dazu, das die Membran in Bewegung gesetzt wird. Die Luft setzt diese in Schwingungen um. Der entstandene Schall wird an einen Anschluss weitergeleitet, an dem Hörschläuche oder Trichter angebracht werden können.²³ Bei Schreibgeräten werden die Schallschwingungen durch einen Anschluss auf die Membran, die wiederum diese auf einen Stift überträgt.²⁴ Dieser sogenannte Stift überträgt die Schallschwingungen auf eine Platte oder Walze, wobei die Schwingungen eingraviert werden.

²³ Vgl. Ebd.
²⁴ Vgl. Ebd.
2.2 Die Schalldose

Die Schalldose, auch als Sprechdose bekannt, war ein wichtiger Bestandteil des Grammophons, die für die Wiedergabe zuständig ist. Bei dem Phonographen ist sie für die Aufnahme, wie auch der Wiedergabe zuständig gewesen.

Die mechanische Kraft die von dem Motor her wirkt, wird von der Schalldose (Sprechdose) durch die sich auf der Schallplatte befindenden Rillen in akustische Energie umgesetzt. Die Rillen werden durch eine Nadel ertastet und führt sie dort entlang. Das wiederum führt dazu, dass Schwingungen von der Membran erfasst werden, die diese mechanische Energie in Schallschwingungen umsetzt.25 „Die Schalldose eines Grammophons besteht aus dem meist zweiteiligen Korpus, der die Membran über zwei Gummiringe fixiert. Das Material der Membran ist bei den teureren Dosen dünnster Glimmer, der leider häufig Einrisse hat (trotzdem manchmal noch erstaunlich gut klingt). Es befindet sich ein kleiner Aufnahmestift im Zentrum der Membran, der dort verklebt und verschraubt ist. Der Aufnahmestift geht „(…) über eine Achse am Ring der Schalldose in die Aufnahmefixierung der Nadel übergeht.“26 Als Glimmer wird eine Gruppe von Schichtsilikaten bezeichnet.27

Bei den billigeren Produkten wurde anfangs überwiegend Aluminium zur Verwendung einer Membran genutzt.28 Dadurch, dass Aluminiummembranen gute Klangeigenschaften hatten, verwendeten bald auch Hersteller von hochwertigen Schalldosen diese. Ein weiterer Grund für diese Verwendung war der zweite Weltkrieg. Die Verarbeitung war zu diesem Zeitpunkt zu teuer, zudem wurde Glimmer in geringeren Mengen verarbeitet, woraufhin auf Aluminium-Membranen zurückgegriffen wurde. Bis in die 1940er-Jahre wurde Glimmer als Schwingungsmembran der Schalldose verwendet. Es wurde durch Aluminium und Kupfer ersetzt.29

29 Vgl. Ebd.
2.3 Von der Edisonwalze zur Zinkplatte von Berliner

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{Abbildung6_Schalldose.png}
\caption{Abbildung 6: Schalldose}
\end{figure}

2.4 Abspielgerät Grammophon

38 Vgl. Jüttemann 1979, S. 82.
40 Vgl. Ebd.
41 Vgl. Jüttemann 1979, S. 82.
42 Vgl. Ebd.
44 Vgl. Ebd.
45 Vgl. Ebd.

48 Vgl. Ebd.
49 Vgl. Jüttemann 1979, S. 82.
Platiniridiumspitze weitergeleitet. Die Spitze liegt auf der Platte und kratzt das Wachs von der Zinkplatte. An der Stelle, wo die Spitze, die Platte berührte, hinterließ die Spitze eine durch die Schallwellen geformte, geschlängelte Rille. Nachteil an diesem Verfahren war es, dass das abgeschabte Wachs einen Klumpen an der Nadel bildete und somit Aufnahmestörungen entstanden.

2.4.1 Funktionsweise des Grammophons

drehenden Schallplatte durch die Nadel an die Membran durch die entstehenden Bewegungen weitergegeben. Die Nadel wurde durch die Wellenlinie der Rillen seitlich hin und her bewegt. Die sich bewegende Membran erzeugte nur eine geringe Schallschnelle, dass im Umkehrschluss bedeutete, dass die Lautstärke enorm leise war. Um die Lautstärke zu vergrößern, wurde ein Trichter zur Verstärkung angebracht. Entscheidend für die Wiedergabe-Qualität des Tons waren dessen Größe, Form und Material. Die Konstruktionsweise erlaubte es, dass diese einfacher und kostengünstiger hergestellt werden konnten.

2.4.2 Trichtergrammophone

Man unterscheidet Trichtergrammophone in Schwenkstabgrammophone und Grammophonen mit einem Tonarm und feststehenden Trichter. 52

![Abbildung 8: Trichtergrammophon von der Firma Mammut](image)

2.4.3 Schwenkstabgrammophone

Bei den Schwenkstabgeräte wird der Trichter und die Schalldose durch das Gleiten in der Rille weitertransportiert, also die gesamte Einheit fortbewegt. Bei den Geräten mit Tonarm und feststehendem Trichter (ab 1904) bewegen sich nur die Schalldose und der Tonarm. Bei Nichtbenutzung ist die Schalldose oft umklappbar („gooseneck“- Tonarm). Durch die separate Halterung des Trichters, konnte dieser größer und schwerer (und damit lauter) konstruiert werden, da er jetzt nicht mehr mitbewegt wurde.\(^{53}\)

\[\text{Abbildung 9: Schwenkstabgrammophon}\]

2.4.5 Tiefenschriftgrammophone

\(^{54}\) Vgl. Fischer 2006, S. 53.
2.4.6 Koffergrammophone auch „Picknick- Orgel“

Abbildung 10: Koffergrammophon

2.4.7 Die Kindergrammophone

Abbildung 11: Kindergrammophon

2.5 Die Entwicklung des Antriebes

Elektrisch angetriebene Werke wurden bereits 1887 von Edison in einen Phonographen mit Elektromotor eingesetzt. „Mit dem Ausbau des öffentlichen Stromnetzes (zwischen 1910-1930) wurden diese ursprüngliche Exoten unter den Geräten immer gängiger.“

2.6 Die Aufnahmen

58 Vgl. Ebd.
2.7 Die Pathé-Platten

Charles Pathé ließ sich ca. 1893 einen Phonographen aus den USA nach Frankreich liefern, da aber die in englischer Sprache gefassten Walzen, wenig Anklang zum Beispiel in Paris fanden, beschlossen die Brüder Pathé die Wachswalzen selbst zu bespielen.61 Durch sie wurde der Phonograph in Frankreich, als der Apparat unter der Bezeichnung „Hahn kräht“ bekannt.

Die Besonderheit der Pathé-Platten ist, dass sie nicht die Seitenschrift nach Emile Berliner, sondern die Tiefenschrift nach Edison für ihre Walzen verwendet haben. Jene Wiedergabeschrift wird dementsprechend nicht an der Walze entlanggeführt, „(…) sondern vollführt eine Berg- und Talfahrt“.62 Dadurch, dass die Edison-Schrift zum Einsatz kam, wurden wie sonst üblich keine Stahlnadeln, sondern Saphir – Kugelstifte eingesetzt. Zudem wurden die Platten von innen nach außen abgespielt. Außerdem besaßen sie einen Durchmesser von 24 cm und 28 cm. Die Abspieldauer dieser Pathé-Platten betrug im Schnitt 4,5-5 Minuten, bei 150 Umdrehungen pro Minute.63

61 Vgl. Jüttemann 1979, S. 92.
62 Vgl. Jüttemann 1979, S. 93.
63 Vgl. Ebd.

2.8 Schallplatten

Charles Sumner Tainter erstellte bereits 1880 die erste Schallplatte, nachdem ihm auffiel, dass die Mängel (Qualität) bei der Edison-Walze ausgeglichen werden könnten. Den Nachteil würde er durch eine Tonrille, welche spiralförmig auf einer flachen Scheibe eingraviert wird, umgehen. Zugrunde dieser Idee liegend entwarf er einen Prototyp eines Apparates, mit dem man Aufnahmen tätigen könnte.\(^{64}\) Dadurch, dass er mit Schwierigkeiten mit der Technik konfrontiert war, gab er diese Versuche auf.

2.9 Schellackplatte

Der bedeutendste Vorgänger der Vinylschallplatte ist die Schellackplatte gewesen. Die erste Schallplatte aus Schellack besaß einen Durchmesser von 22 cm und hatte eine Drehgeschwindigkeit von 65 und 82 UpM (Umdrehung pro Minute). Überwiegend wurden die Schallackplatten mit der Seitenschrift versehen.

2.9.1 Tonträger Schallplatte

Im Jahre 1897 verwendete Berliner einen Werkstoff der Duranoid- Company of Newark/ N. J., welches bei der Herstellung von elektrischen Isolationsköpfen eingesetzt wurde. Dieser Werkstoff enthielt größtenteils Schellack, Schwerspat, Ruß und Kuhhaare. Dieser Werkstoff diente sehr lange nach Verbesserungen, als Plattenwerkstoff.\(^{67}\)

Erst Emile Berliner gelang es das Material, aus dem die Platten bestanden und aus der eine erstklassige Pressung von der Metallmatrize abgenommen werden konnte, zu optimieren.\(^{68}\)

\(^{64}\) Vgl. Fischer 2006, S. 92.
\(^{65}\) Vgl. Jüttemann 1979, S. 79.
\(^{67}\) Vgl. Jüttemann 1979, S. 80.
\(^{68}\) Vgl. Fischer 2006, S. 90.
2.9.3 Material

2.9.4 Die Herstellung einer Schellackplatte

70 URL: http://www.zusatzstoffe-online.de/zusatzstoffe/274_e904_schellack.html, abgerufen am 23. Januar 2015.
73 Vgl. Ebd.
diese Masse in „(…) kleine Quadrate eingeteilt und eingeritzt (…)“ wurde.74 Nachdem diese Quadrate abgekühlt sind, wurden sie in viereckige Abschnitte in sogenannte „Biskuits“ gebrochen. Diese „Biskuits“ werden erneut erwärmt und in eine Presse hineingelegt. Bei dem Vorgang wird sogleich das Etikett in die Schellackplatte eingepresst.

Schellack wurde deshalb gegenüber dem natürlichen vorkommenden Harz vorgezogen, da dieses wenn sich dieses nicht im Rohzustand befindet, wo es sehr zäh ist, eine hervorragende Fließeigenschaft, wie auch eine enorme Hitzebeständigkeit und einen hohen Widerstand gegen Wasser aufweist.75 Gerade in Kriegszeiten, wie auch in den Nachkriegszeiten war die Recyclingsfähigkeit des Materials von allergrößter Bedeutung. Es kam zu jenen Zeiten nicht selten vor, wenn man eine Schellackplatte käuflich erwerben wollte, eine im Gegenzug zurückgab, wodurch wiederum viele wichtige Musikdokumente verloren gingen.

Problematisch war die hohe Sprödigkeit der Schellackplatte.

\subsection*{2.9.5 Das Ende der Schellackplatte}

74 Vgl. Fischer 2006, S. 90.
75 Vgl. Ebd.
76 Vgl. Fischer 2006, S. 112.
3 Entstehung der Vinylschallplatte

Abbildung 13: RCA-Victor Program Transcription Discs

3.1 Chemische Aspekte und PVC als Sprungbrett

- **Bruchsicherheit:** Der Stoff sollte dem Druck des Tonabnehmers auf die Platte widerstehen können und keine Schäden hinterlassen oder diese zumindest stark reduzieren.

- **Gewicht:** Die Schellackplatten waren äußerst schwer. Man erhoffte sich vom Gewicht her leichtere Platten, um den Transport erleichtern und die Haptik zu verbessern.

- **Hydrophobie:** Die Platte sollte kein Wasser absorbieren und in Wasser praktisch unlöslich sein, da das zu Krümmung der Platte führen könnte.

- **Preis:** Wird das zu herstellende Produkt ein Erfolg, so wird es höchstwahrscheinlich massenangefertigt. Dabei setzte man natürlich auf eine preiswerte Produktion und niedrige Transportkosten, die wiederum davon beeinflusst sind, wie schwer die Ware ist.

PVC brachte genau diese Eigenschaften mit sich. Es war leicht zu verarbeiten, bruchsicher, leicht, wasserabweisend und günstig. PVC gehört zu der Kunststoffgruppe der Thermoplaste, ist also aus kettenartigen Makromolekülen aufgebaut. Da es verglichen mit vielen anderen Kunststoffen relativ wenige Kohlenstoffatome enthält, ist für die Herstellung von PVC auch weniger Erdöl oder Erdgas nötig, was einen niedrigeren Preis mit sich brachte. Somit wurde 1948 Schellack endgültig vom Kunststoff Polyvinylchlorid abgelöst.

Wichtig ist es hinzuzufügen, dass die Zugabe von Weichmachern und Stabilisatoren das PVC weich, formbar und für technische Anwendungen eignen lässt. Das von Grund aus harte und spröde

79 URL: http://www1.wdr.de/fernsehen/wissen/quarks/sendungen/unkaputtbar-hommageansplastik100.html, abgerufen am 17.01. 2015.

Abbildung 14: PVC Compound

3.2 Technische Aspekte

Bei der Herstellung der Schallplatte achtet man neben den chemischen Aspekten auch auf technische Aspekte, die sich während ihrer Entwicklung über die Jahre mehrmals verändert und angepasst haben. Je nach Durchmesser passten mehr Rillen auf die Schallplatte und Fortschritte im Bereich der Tonabnehmern und Abtastnadeln, sowie in der Entwicklung verbesserter Plattenschriftarten bedeuteten erst einmal eine längere Spieldauer und die Auskopplung von einigen Formaten, von denen sich heute einige als Standard etabliert haben. Diese Formate wurden auch von Compact Discs, wie wir sie heute kennen, übernommen. Je mehr Spieldauer die Platte hatte, desto mehr Freude hatte der Verbraucher. Vor 1930 waren Schellackplatten mit einem 30cm Durchmesser und 78 U/min üblich, die eine Spieldauer von nur 3,5 – 4,5 Minuten pro Seite

3.2.1 Formate

3.2.1.1 Die Langspielplatte

Abbildung 15: Columbia Records' erste LP

3.2.1.2 Die 7"-Single

Mit der Entdeckung und Nutzung von Polyvinylchlorid konnten jetzt auch Schallplatten hergestellt werden, die eine Spieldauer von 30 Minuten oder mehr erreichen konnten. Die gewöhnlichen 80 bis 100 Rillen, die per Zoll in das Rohling geschnitten wurden, wurden auf 224 bis 260 erhöht. Das war die Entstehung der "Microgrooves" (zu Deutsch: Kleinstrillen).83

3.2.2 Plattenspieler

Abbildung 17: Statistik der Absatzzahlen der Victrola Modelle

<table>
<thead>
<tr>
<th>Model</th>
<th>Est. Production (%) of Production Total</th>
<th>Cumulative Percentage</th>
<th>Rarity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VV-XI</td>
<td>643,000</td>
<td>10.6%</td>
<td>10.6%</td>
<td>*</td>
</tr>
<tr>
<td>VV-XII</td>
<td>700,000</td>
<td>8.6%</td>
<td>19.4%</td>
<td>*</td>
</tr>
<tr>
<td>VV-IV</td>
<td>590,000</td>
<td>7.9%</td>
<td>26.3%</td>
<td>*</td>
</tr>
<tr>
<td>VV-X Floor Model w/ Enclosed Sides</td>
<td>352,000</td>
<td>6.0%</td>
<td>33.8%</td>
<td>*</td>
</tr>
<tr>
<td>VV-IX</td>
<td>521,000</td>
<td>6.6%</td>
<td>40.4%</td>
<td>*</td>
</tr>
<tr>
<td>VV 2-55</td>
<td>330,000</td>
<td>4.2%</td>
<td>44.6%</td>
<td></td>
</tr>
<tr>
<td>Consolette & VV 4-3 & Consolette X and VE 4-3</td>
<td>310,000</td>
<td>3.9%</td>
<td>48.5%</td>
<td>*</td>
</tr>
<tr>
<td>VV-XIV</td>
<td>252,000</td>
<td>3.2%</td>
<td>51.7%</td>
<td></td>
</tr>
<tr>
<td>VV-210</td>
<td>210,000</td>
<td>2.6%</td>
<td>54.3%</td>
<td></td>
</tr>
<tr>
<td>VV-100</td>
<td>195,000</td>
<td>2.5%</td>
<td>56.8%</td>
<td></td>
</tr>
<tr>
<td>R-32</td>
<td>100,000</td>
<td>2.4%</td>
<td>50.2%</td>
<td></td>
</tr>
<tr>
<td>VV-VIII</td>
<td>188,000</td>
<td>2.3%</td>
<td>61.5%</td>
<td>*</td>
</tr>
<tr>
<td>VV-80</td>
<td>185,000</td>
<td>2.3%</td>
<td>63.8%</td>
<td></td>
</tr>
<tr>
<td>VV-50</td>
<td>153,000</td>
<td>1.9%</td>
<td>65.6%</td>
<td></td>
</tr>
<tr>
<td>VV-XVI & VE-XVI w/ conventional doors</td>
<td>145,000</td>
<td>1.8%</td>
<td>67.6%</td>
<td></td>
</tr>
<tr>
<td>VV-215 & VV-S-215</td>
<td>131,000</td>
<td>1.7%</td>
<td>69.2%</td>
<td></td>
</tr>
<tr>
<td>Victor II</td>
<td>125,000</td>
<td>1.6%</td>
<td>70.8%</td>
<td></td>
</tr>
</tbody>
</table>

85 URL: http://www.victor-victrola.com/Production%20Volumes.htm, abgerufen am 08.02.2015.

3.2.3 Tonabnehmer und Abtastnadel

Die ersten Grammophone waren mit einer simplen Nadel bestückt, die völlig aus Stahl bestand und deren Spitze einfach spitz geschliffen war. Diese Art der Nadel war sehr leicht auszutauschen, hatte aber den Nachteil, die Rille des Schellacks sehr zu beanspruchen. Ein weiteres Manko war die schnelle Abnutzung der etwa 0,7 Millimeter breiten Nadel. Nach nur wenigen Abspielstunden war die Nadel nicht mehr zu gebrauchen und musste gewechselt werden.

Abbildung 20: Edison Diamond Phonograph

3.3 Herstellung

3.4 Master

Abbildung 21: polierte Aluminiumscheibe

In der Beschichtungsanlage erhält die polierte Aluminiumscheibe einen Überzug aus

(URL: http://www.discpartner.de/).

Abbildung 22: Lackscheibe mit Abstandhalter
Aufnahme aus einer einzigen Rille, die sich spiralförmig vom äußeren Rand bis zur Mitte der Scheibe zieht.

3.5 Pressung in der Fabrik

Abbildung 24: Zinkchlorid- und Silberbeschichtung

*Abbildung 25: Oben:
Pressmatrize, der "Sohn". Unten:
Positiv, die "Mutter".*

Abbildung 26: PVC-Granulat wird in den Extruder gegeben.
Der Extruder formt daraus den sogenanten "Presskuchen", einen heißen, runden und gummiartigen Klumpen.

Abbildung 27: 160g Presskuchen (unten) mit Label (oben)

Abbildung 28: Pressmaschine

versandfertig gemacht. Der ganze Vorgang des Pressens und Entgratens dauert etwa 30 Sekunden. Das bedeutet um 100.000 Schallplatten zu produzieren muss die Schallplattenpresse 833 Stunden durchgehend laufen.

4 Vinylschallplatte als nostalgisches Gebrauchsmedium

Mit den ersten Erfindungen, Musik und Sprache aufzunehmen, zu verbreiten und an die Öffentlichkeit zu bringen und letztendlich zuhause selbst in den Genuss zu verfallen sich den Klängen hingeben zu können, es Freunden und Verwandten zu präsentieren, wurde ein neuer luxuriöser Lebensstil geebnet. Das Leben auszukosten und zu genießen, sich Zeit für die guten Dinge im Leben zu nehmen, sich von dem Alltagstrott bzw. der Routine zu distanzieren, und die Momente mit Freude zu erfüllen, wurden durch die Entwicklung der Schallplatte begünstigt. Offensichtlich war es Kunst, sich in Form von Musik ausdrücken zu können und damit ein so viel größeres Publikum anzusprechen, als das in einem örtlichen Etablissement. Die Menschen waren somit in der Lage Werke von ihren favorisierten Interpreten zu sammeln, darunter auch zahlreiche Raritäten.

Wieso Menschen angefangen haben Schallplatten in Massen zuhause zu sammeln und sie zu archivieren, war mitunter auf die Hingabe zum Jazz, Swing oder anderen Musikrichtungen, wie diese in den 20er und 30er Jahren in den USA entstanden sind, zurückzuführen.

Die Schallplatte war nicht nur für seine eigene Klangfarbe so besonders, sondern wird bis heute für seine ästhetischen Aspekte von Anhängern geliebt. Zum einen die Runde, glatt und glänzende Platte mit Mittelloch und zum anderen spielt die Verpackung hier eine große Rolle. Die Rede ist von Schallplattencovern, die in verschiedensten Ausführungen aufzufinden sind. Wie auch bei den technischen Aspekten der Platte, hat sich hier bis heute viel verändert, was den visuellen Aspekt betrifft. Je ausgefallener, kreativer und passender das Cover zur Single oder zum Album, desto höher sind möglicherweise die Verkaufszahlen.

Um auf den letzten Teil unseres Projektes einzugehen, wollten wir uns damit beschäftigen, was einen Kunden in heutiger Gesellschaft anhält, sich statt CD, DVD oder digitalem Download, eine Schallplatte anzueignen oder wieso Schallplatten jeglicher Art noch heute von Liebhabern und Kennern gesammelt und aufbewahrt werden. Um dafür aussagekräftige Argumente zu finden, sollte man sich sicherlich für die subjektive Meinung von Menschen interessieren, die selbst im Besitz von Platten und vielleicht auch Raritäten sind. Solche Menschen zu finden, anzutreffen und Interviews zu führen erschien uns günstig. Wir haben die Plattenläden in Berlin aufgesucht und sind
auf positive Resonanz gestoßen. Wir haben zwei Interviews geführt, diese ausgewertet und zu einem zusammengefasst. Auch haben wir uns für die Methode entschieden einige im Internet zur Verfügung gestellten Videos über Sammler zu analysieren, um uns detailliertere Einblicke in das archivieren von Platten zu gewähren und dadurch besser verstehen zu können, wieso sich die Vinylschallplatte bis heute als nostalgisches Gebrauchsmittel hält.

4.1 Soziokulturelle Aspekte

4.2 Archivierung

Archivaren, von denen er sich Raritäten im Tausch oder Handel angeeignet hat. Lotz besitzt auch sehr wertvolle historische Seltenheiten, wie eine aus dem Jahre 1932 stammende Bildschallplatte aus der Nazizeit auf der Adolf Hitler eine nationalsozialistische Propaganda-Rede hält. Viele Schallplatten sind museumsartige Sammlerstücke und bilden ein Archiv, die allerdings von ihm selbst nicht zur Freizeitbeschäftigung genutzt werden.\footnote{Ein Schatz aus schwarzen Scheiben 1/2. URL: https://www.youtube.com/watch?v=xMe4cNRKLy8, abgerufen am 25.01.2015.}

4.3 Raritäten und Schallplattencover

Schallplattencover, die aufgrund von musikalischem Erfolg in anderer Ausfertigung neu gedruckt und verkauft worden sind, hatten gewisse Cover als Vorgänger, die in der Form dann nicht mehr erhältlich waren und daher nur in wenige Hände gerieten.

Künstler versuchten ihre Themen und Botschaften der Singles und Alben an die Schallplattencover so gut wie möglich anzupassen. Schallplattencover waren seit der Etablierung auf dem Schallplattenmarkt ein Ausdruck von Kunst und Stil und haben mit dem Durchbruch der Vinylschallplatte immer mehr an Bedeutung gewonnen.

4.4 Die Schallplatte heute

sich auch unterhalten und austauschen, sowie sie sich auch auf neue Geschmäcker und Inspirationen einlassen.

5 Literatur

Amerikanische Literatur:

Deutsche Literatur:

Internetrecherche:

• http://www.ebay.de/gds/Was-bringt-einen-besser-Klang-Saphir-oder-Diamantnadeln-/1000000177882034/g.html
• http://www.tonaufzeichnung.de/medien/vinylschallplatte
• http://www.hifimuseum.de/
• http://www1.wdr.de/fernsehen/wissen/quarks/sendungen/unkaputtbar-hommageansplastik100.html

• www.deutschlandfunk.de/teilchenphysiker-retten-schellack-schaetzchen.676.de.html?dram:article_id=21547

• http://www.zusatzstoffe-online.de/zusatzstoffe/274.e904%20AD_schellack.html

• http://grammophon-platten.de/news.php

Bilder:

• Abbildung 1: Phonautograph aufgezeichnete Schwingungen (Jüttemann 1979, S. 22)

• Abbildung 2: Skizze eines Phonautographen (Jüttemann 1979, S. 21)

• Abbildung 3: Drehung eines Klinkenrades durch die Schwingung einer Membran (Jüttemann 1979, S. 25)

• Abbildung 4: Skizze einer Sprechmaschine von Edison (Jüttemann 1979, S. 26)

• URL Abbildung 5: http://cylinders.library.ucsb.edu/tinfoil.jpg

• URL Abbildung 6: http://www.grammophon.ch/tisch_grammophone/gramophon_tisch/details/DSCN4335.jpg

• Abbildung 7: Aufnahmeapparat von Emil Berliner (Jüttemann 1979, S. 80)

• URL Abbildung 8: http://www.burgimeilen.ch/grammophon/b0338399cab093a8050.jpg

• URL Abbildung 9: http://www.grammophon.ch/trichter_grammophone/monarch/details/DSC00597.jpg

• URL Abbildung 10: http://www.sterkrader-radio-museum.de/Gram_Felz.gif

• URL Abbildung 11: http://www.nipperfriend.de/de/sammlung/kindergrammophone/kindergrammo_klein.jpg

• URL Abbildung 12: http://www.radiomuseum.org/forumdata/users/4888/Pathe_Warenzeichen.jpg

• URL Abbildung 13: http://www.radioblvd.com/ConsolePhoto.htm

• URL Abbildung 14: http://www.wirefirst.com/newphotos/sylvia.jpg
- URL Abbildung 16: http://historydumpster.blogspot.de/2012/08/the-history-of-45-rpm-record.html
- Statistik Abbildung 17: http://www.victor-victrola.com/Production%20Volumes.htm
- URL Abbildung 18: http://www.liveauctioneers.com/item/1062282
- URL Abbildung 19: http://www.antiquephono.org/basic-antique-phonograph-operational-tips/
- URL Abbildung 21 – 28: https://www.youtube.com/watch?v=2V76CgEuj1c und https://www.youtube.com/watch?v=vYLxKwwArd4